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Outline 
ALS-U is a cost effective and innovative upgrade and will be a world 
leading facility for soft x-ray science enabling nanoscale microscopes 
with chemical, magnetic, and electronic contrast. 
 
•  Synchrotron Radiation – Coherence – Diffraction Limit 
 
•  Advances of Synchrotron Light Sources 

–  Transverse Dynamics 
–  Synchrotron Radiation 
–  Dynamic Aperture 

•  Diffraction Limited Storage Rings 
–  Lattice Design 

•  Advanced Light Source – ALS-Upgrade 
–  Technology Challenges 

•  R+D Program 
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Options for Future Light Sources: 
•  Diffraction Limited Storage rings 
•  Energy recovery linac (ERL) 
•  Free electron laser (FEL) 
 
 
Figures of merit 

•  Average and peak flux 
•  Average and peak brightness 
•  Pulse repetition rate 
•  Temporal coherence 
•  Bandwidth 
•  Spatial coherence 
•  Pulse duration 
•  Synchronization  
•  Tunability 
•  # beamlines 
•  Beam stability 

DOE Report on Future Light Sources (2008/2009) 

Future generations of light sources will 
continue to utilize novel techniques for 
producing photons tailored to applications: 

Different operating modes 
Optical manipulation of particle beams 
Use of multiple, complementary facilities 
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•  Synchrotron radiation is electromagnetic 
radiation emitted when charged particles 
are radially accelerated (move on a 
curved path). 

Electrons accelerating by 
running up and down in a 
radio antenna emit radio 
waves (long wavelength 
electromagnetic waves) 

Both cases are due to the same fundamental principle: 
Charged particles radiate when accelerated. 

What is Synchrotron Radiation? 
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bending magnet 

wiggler - incoherent superposition 

undulator - constructive interference 

How is Synchrotron Radiation generated 

Flux ~ Current * Nperiod 

Flux ~ Current 

Flux ~ Current * N2
period 
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Strengths of Ring Based Light Sources 

•  Stability: High positional and photon energy stability 
•  Tunability: Easy and rapid photon energy tunability 
•  Access: Serves ~ 40 instruments simultaneously 
•  Quasi-CW Operation - Long pulses at high repetition rates: 

-  Advantage for important classes of experiments 

~  2 nanoseconds


~ 100 picoseconds 
~nanojoule
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Flux =  # of photons in given Δλ/λ 
sec 

Brightness =  # of photons in given Δλ/λ 
sec, mrad θ, mrad ϕ, mm2 

•  Brightness is the one of the main parameters for the 
characterization of a particle/light source 

• Determines achievable resolution (space, time, energy) within 
a given measurement time 

• Brightness is defined as the density of particles in 6-D phase 
space = Flux normalized by emission area and divergences 

dy

dx dφdθ

cdt

Brightness of a Light Source 
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≥2 orders of magnitude 
progress in brightness between 
generations 
•  First Generation: Parasitic, 

use of dipole sources 
•  Second Generation: 

Dedicated, dipoles, later 
wigglers, higher flux 

•  Third Generation: Dedicated, 
optimized for undulators, high 
average brightness 

•  Fourth Generation: three 
approaches (linear/ring); high 
coherence 
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Advances in Light Source Performance 
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Recent Advances Enable Ultra-Bright Rings 

•  Storage ring light sources have not reached their 
practical limits of brightness and coherence. 

•  Dramatic improvements are possible due to 
transformational advances in accelerator design. 

•  What Has Changed: 
•  Tightly-packed multi-bend achromat lattices 

via new magnet and vacuum technology. 
•  Success of top-up, better understanding of 

storage ring scaling, advances in simulation, 
optimization, and alignment. 

•  International community is now upgrading existing 
facilities and building new facilities with diffraction 
limited capability that will enable new science. 

2014 

2020
’s 

x [µm]

y 
[µ

m
]

−500 0 500
−500

0

500

x [µm]

y 
[µ

m
]

−500 0 500
−500

0

500

2014 

2020s 

9 
9 



C. Steier, ALS-U, LBNL Instrumentation Colloquium, 2015-8-26 

)BW%s))(())(((
)(N

)(B
ryrx

ph
avg ⋅λε⊕ελε⊕ε

λ
∝λ

εx,y = electron emittance      εr = photon emittance = λ/4π

Brightness and Equilibrium Emittance 
 •  Spectral brightness: photon density in 6D phase space 

•  Horizontal (natural) emittance determined by balance between 
radiation damping and quantum excitation due to synchrotron 
radiation in all magnets: 

•  How to minimize emittance? 
–  Reduce dispersion and beta function in bend magnets (wigglers/undulators) 
–  Achieved by refocusing beam ‘inside’ bending magnets -> need space 
–  ‘Split’ bending magnets -> multi bend achromats 

dy
dx

dφ
dθ

cdt
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Background: Transverse Beamdynamics 
There are several magnet types that are 
used in storage rings:
 Dipoles à used for guiding

 Bx = 0 
 By = Bo

Quadrupoles à used for focussing
 Bx = Ky 
 By = -Kx

Sextupoles à used for chromatic 
correction

 Bx = 2Sxy
 By = S(x2 – y2)

11 
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Practical Magnet Examples at the ALS 

12 

Quadrupoles 
 Sextupoles 

 

Dipoles 
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Dispersion, D, is the change in closed orbit as a function 
of energy

Dispersion 
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Radiation damping 
Energy damping:

Larger energy particles lose more energy

Transverse damping:

Energy loss is in the direction of motion while the re-
acceleration in RF cavities is only longitudinal

4
2

2

2
3SRP c γ
α

ρ
= h

14 



C. Steier, ALS-U, LBNL Instrumentation Colloquium, 2015-8-26 

Quantum Excitation / Transverse 
Equilibrium Emittance 

Particles, which change their energy in a region of 
dispersion starts transverse oscillations. This balanced 
by damping gives the equilibrium emittances.
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 Common Lattice Options 

1/2 Insertion Straight 1/2 Insertion Straight

Achromat

Achromat Symmetry Point

Insertion Symmetry Point

Dispersion Function

1/2 Insertion Straight 1/2 Insertion Straight

Achromat

Achromat Symmetry Point

Insertion Symmetry Point

Dispersion Function

1/2 Insertion Straight 1/2 Insertion Straight

Achromat

Achromat Symmetry Point

Insertion Symmetry Point

Dispersion Function

•  Early 3rd generation SR sources all used 
double/triple bend achromats (some with 
gradient dipoles) 

•  Later optimization included detuning from 
achromatic condition (Optimizing effective 
emittance) 

•  New designs (including DLSRs) employ MBA 
•  Damping wigglers can help (emittance, 

damping time, IBS) but trade energy spread 

16 



C. Steier, ALS-U, LBNL Instrumentation Colloquium, 2015-8-26 

Design choices/Challenges of ALS-U 
•  Design Choices: 

–  Enabled by decade of progress in 
nonlinear dynamics, instabilities, 
magnet+vacuum technology: 

•  Smaller magnet and vacuum apertures 
•  Advanced Lattice 
•  New Injection Method 

•  Challenges:  
–  Physics: Stability, Lifetime, Injection – 

integrated design optimization 
–  Engineering: Magnets, vacuum 

systems, insertion devices  
•  All challenges are manageable.  

 

r1=35mm:	
  ALS 

r2=12mm:	
  ALS-­‐U 

17 
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Nonlinear Dynamics / Particle Losses 

18 

•  Particles are lost in accelerators because of finite 
apertures, potentially limiting 
•  Injection efficiency, or 
•  Beam lifetime 

•  Limiting apertures can be physical or dynamic: 
•  Vacuum chamber → physical aperture 
•  Nonlinear single particle dynamics → dynamic (energy) 
aperture 

•  Loss process typically involves two steps: 
•  Scattering process (or injection) launching particles to 
large amplitudes outside core of beam 
•  Resonant or diffusive processes (nonlinear dynamics) 
leading to growth of oscillation amplitudes 
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Betatron Resonances 

19 

mν x + nν y = q
•  Resonances can occur when the 

tunes satisfy: 
 

•  Generally resonances are 
weaker the higher their order 

•  Integer resonances driven by 
dipole errors, half-integer by 
quadrupole errors, third-integer 
by sextupoles, … 

  where m, n and q are integers
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Tune shift with amplitude 
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Frequency Map Analysis 
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Brightness, Coherent Fraction, Diffraction Limit  
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DLSRs produce photon beams with dramatically larger 
coherent fraction due to reduced horizontal emittance 

80 pm @ 1 keV 
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Brightness is inversely proportional to convolution of 
electron beam sizes and divergences and diffraction 
emittance 
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International Context – New Rings + Upgrades 

23 

France:	
  ESRF-­‐II	
  (2020):	
  6	
  GeV,	
  	
  
160	
  pm	
  x	
  3	
  pm,	
  200	
  mA	
  	
  (Upgrade	
  project)	
  

BNL:	
  NSLS-­‐II	
  (2015):	
  3	
  GeV,	
  	
  
1000pm	
  x	
  8	
  pm,	
  500	
  mA	
  (New,	
  Opera7onal)	
  

Sweden:	
  MAX-­‐IV	
  (2016):	
  3	
  GeV,	
  	
  
230	
  pm	
  x	
  8	
  pm,	
  500	
  mA	
  (New)	
  
	
  

23 

Brazil:	
  SIRIUS	
  (2016/17):	
  3	
  GeV,	
  	
  
280	
  pm	
  x	
  8	
  pm,	
  500	
  mA	
  (New)	
  
	
  

ALS-­‐U:	
  2	
  GeV,	
  50	
  pm	
  x	
  50	
  pm,	
  	
  
500	
  mA	
  	
  (Pre-­‐Conceptual	
  design)	
  
	
  

APS-­‐U:	
  6	
  GeV,	
  60	
  pm	
  x	
  8	
  pm,	
  	
  
200	
  mA	
  	
  (Upgrade	
  project)	
  
	
  Other	
  interna*onal	
  plans:	
  Japan	
  (Spring	
  8,	
  6	
  GeV),	
  China	
  (BAPS,	
  5	
  GeV),	
  Germany	
  (PETRA-­‐III),	
  	
  

France	
  (SOLEIL),	
  Switzerland	
  (SLS,	
  2.4	
  GeV),	
  Italy	
  (ELETTRA)	
  are	
  developing	
  brightness	
  upgrade	
  plans	
  

NSLS-­‐II	
  	
   MAX-­‐IV	
   SIRIUS	
  

APS-­‐U	
   ALS-­‐U	
  ESRF-­‐II	
  

Large	
  circumference	
  +	
  damping	
  wigglers	
   First	
  new	
  mul7-­‐bend	
  achromat	
  rings	
  

1st	
  mul7-­‐bend	
  achromat	
  upgrade	
   U.S.	
  upgrade	
  landscape	
  for	
  the	
  future	
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Goals for ALS-U 

•  Develop the highest brightness and most capable soft x-ray synchrotron facility 
-  SXR brightness beyond any synchrotron, current, planned, under construction 
-  up to 1000x increase in brightness over current ALS 

 
•  Use advanced imaging techniques to address essential science and technology 

-  chemical, electronic, and magnetic maps of functional systems  
-  nanometer resolution in 3-dimensions  
-  dynamics and kinetics on natural timescales from picoseconds to minutes 

-  Execution: 
-  Finish in 6 years from CD-0 
-  Minimize dark time to less than one year 
-  Most beamlines operational at end of project 
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Exis7ng	
  ALS	
  Ring	
  

ALS	
  Gun	
  and	
  Linac	
  

Exis7ng	
  ALS	
  Booster	
  Ring	
  

New	
  Accumulator	
  Ring	
  
New	
  ALS	
  Storage	
  Ring	
  Radia7on	
  	
  

Shielding	
  

Scope of the ALS-U Project 

25 

•  Replace storage ring with new high performance storage ring based on multi bend 
achromat: same straight section length, location, and symmetry as original storage ring 

•  Add full energy accumulator ring in existing storage ring tunnel 
•  Modify existing beamlines: optics upgrades and beamline relocation 
•  Add two new world-class undulator beamlines optimized for science case 
•  Upgrade some conventional facilities 

Cost effective solution: 
•  Will reuse existing building, shielding, injector, and most beamlines  
•  Will have operational costs similar to ALS 
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pseudo single 
bunches for pulses on 

demand 

Successful ATAP and ALS Innovation in Providing Exquisite 
X-Ray Beams and Developing Next Generation Light Sources 

first ALS 
light 

multi-bunch feedback for high-
current and  

high-brightness 

elliptically 
polarizing 
undulator 

1993                              2003                            2013 

brightness upgrade 
3x emittance reduction 

top-off at  
500 mA 

frequency maps 

1993                              2003                          2013     2020s 

ready for 
generational 
leap: ALS-U 
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Mounting Interest in ALS-U 

27 

Jul 2013  BESAC Subcommittee on Future X-ray Light Sources: “The Office of 
Basic Energy Sciences should ensure that U.S. storage ring x-ray 
sources reclaim their world leadership position. […] It is essential 
that the facilities this science community relies on remain 
internationally competitive in the face of the innovative developments 
of storage rings in other countries. Such developments include 
diffraction-limited storage rings. […]” 

 
Oct 2014  Workshop on Soft X-ray Science Opportunities using Diffraction-

Limited Storage Rings, LBNL 
 
Feb 2015  Roger Falcone presentation at BESAC: Soft X-Ray Workshop Report: 

Scientific opportunities enabled by coherent soft x-rays 
 
May 2015  Senate's FY16 Energy & Water appropriations bill includes the 

statement, “Further, $5,000,000 is provided for research and 
development for the Advanced Light Source Upgrade.” 
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ALS-U Connects Nanoscale Landscapes to Function 

28 

ALS-­‐U	
  tools	
  will	
  
	
  	
  	
  	
  -­‐	
  -­‐	
  map	
  nanoscale	
  landscapes	
  with	
  chemical,	
  electronic,	
  magneKc	
  contrast	
  
	
  	
  	
  	
  -­‐	
  -­‐	
  probe	
  nanoscale	
  mo,on	
  of	
  mass,	
  charge,	
  spin,	
  elementary	
  excitaKons	
  	
  

Measuring & directing 
nanoscale chemistry 

Electrochemical	
  landscape	
  
controls	
  ion	
  transport,	
  SEI	
  

stability,	
  cell	
  lifeKme	
  

Chemical	
  landscapes	
  in	
  
MOFs	
  controls	
  catalysis,	
  

CO2	
  capture	
  

Global biological & 
environment challenges 

MagneKc	
  landscape	
  
controls	
  spin	
  and	
  skyrmion	
  

transport,	
  processing	
  

Materials to enable low 
power processing 
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SelecKve	
  Catalysis	
  
10.1038/nchem.1956	
  

NucleaKon	
  kineKcs	
  
10.1126/science.1230915	
  

Polymer	
  reptaKon	
   IntercalaKon	
  kineKcs,	
  	
  
10.1039/C0EE00473A	
  	
  

Brightness	
  allows	
  capture	
  of	
  spontaneous	
  
nanoscale	
  kineKcs:	
  approaching	
  the	
  h/kBT	
  	
  Kmescale 

29 

Self	
  assembly	
  

now/new	
  

X-­‐ray	
  Photon	
  CorrelaKon	
  
Spectroscopy:	
  	
  S(q,t)	
  

Resonant	
  InelasKc	
  X-­‐Ray	
  
Sca_ering:	
  	
  S(q,ω)	
  

Optical design: high resolution energy multiplexed  q-RIXS&

-  Reuse of existing beamline 6.0.2 infrastructure 

-  38 mm period EPU + front end + M1 mirror tank 
-  controls / electrical / safety systems 
-  beamline vacuum systems, mirror tanks… 
-  new multi-grating monochromator 
-  new double elliptical mirror focusing system 

 
-  38 mm period EPU 
-  250eV – 1.5 KeV 
-  Entrance slitless PGM, R = 40,000 at 1 keV 
-  Exit slitless; focal plane is at the sample 
-  High horizontal demag to 3 µm 
 

Time-­‐resolved	
  X-­‐ray	
  
Microscopy:	
  	
  G(r,t)	
  

RIXS	
  	
  	
  	
  FT-­‐RIXS	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Fast	
  XPCS	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  XPCS	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  movies 	
   	
  	
  	
  	
  	
  movies/XPCS	
  

Time Scale 
(sec) 

10-1       10-3        10-5       10-7       10-9        10-11        10-13       10-15      10-18      Energy Scale 
(eV) 
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1/2 Insertion Straight

Achromat

Dispersion Function

1/2 Insertion Straight 1/2 Insertion Straight

Achromat

Dispersion Function

Multi-Bend Achromat Lattices Enable Small Electron 
Emittance and High X-Ray Brightness 

εx =CL
E 2

ND
3ε x =  2000 pm @ 1.9GeV ε x =  52 pm @ 2.0GeV

ALS-U 
multi-bend achromat (9BA) 

ALS today 
triple-bend achromat (TBA) 

TBA 9BA 

30 
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ALS and ALS-U in numbers 
Parameter Units Current ALS ALS-U 
Electron Energy GeV 1.9 1.9-2.2 (2.0 baseline) 
Horiz. Emittance pm rad 2000 ~50 
Vert. Emittance pm rad 30 ~50 
Beamsize @ ID 
center (σx/σy) 

µm 251 / 9 <10 / <10 

Beamsize @ Bend 
(σx/σy) 

µm 40 / 7 <5 / <7 

Energy Spread ΔE/E 9.7×10-4 <9×10-4 

Typical Bunch 
Length (FWHM) 

ps 60-70 
(harmonic cavity) 

150-200 
(harmonic cavity) 

Circumference m  196.8 ~196.5 
Bend Magnet Angle degree 10 3.33 

31 
31 
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•  Choices	
  are	
  made	
  to	
  op7mize	
  
brightness	
  for	
  photon	
  energy	
  
range:	
  
–  Electron	
  beam	
  energy	
  
–  Undulator	
  technology	
  

•  Features	
  of	
  ALS	
  2	
  GeV	
  ring	
  
compared	
  with	
  higher	
  energy	
  
ring:	
  
–  Larger	
  beam	
  current	
  
–  More	
  undulator	
  periods	
  for	
  	
  

given	
  photon	
  energy	
  
–  Lower	
  heat	
  load	
  on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

beamline	
  components	
  
	
   --- ---  current ALS, 

APS 
ü ALS-U design results in: 

Highest coherent soft x-ray flux 
32 

ALS	
  

APS	
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ALS-U is Optimized for Soft X-Ray Science 
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Use	
  of	
  Swap-­‐Out	
  Enables	
  GeneraKonal	
  Leap	
  
 –  On-axis swap-out 

injection: 
•  Further optimization of 

lattice (smaller emittance) 
•  Round beams (more useful 

shape and reduced 
emittance growth) 

•  Magnet field requirements 
relaxed (cost benefit) 

•  Vacuum chambers with 
small and round apertures            
(better undulator 
performance) 

•  Reduced injection losses 
(better performance) 
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ALS-U storage ring and accumulator ring  

Today’s ALS storage ring 

Only  ALS-U and APS-U 
include swap-out 

Swap out initially  
proposed by M. 
Borland 
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Advantage of smaller apertures 
•  Smaller apertures in DLSR arcs enable 

strong gradients to minimize emittance 
•  However, DLSRs also allow smaller 

apertures in straights 
–  Smaller gaps allow higher performance 

(shorter period, i.e. more flux) undulators 
–  Round beam allows to go from flat 

undulator geometries (which were fine for 
linear polarization) to round ones  

–  Potentially large advantage for 
polarization control undulators (could be 
both permanent magnet or s/c) 

–  Will evaluate substantially cheaper 
undulators 

A. Temnikh – Delta Undulator 

ALS: MAESTRO EPU 
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R+D Areas 
Topics selected to cover areas 
with highest technical risks – 
well aligned with community 
consensus 
 
Funded by LDRD: 
•  Pulsed Magnets/Injection 
•  Vacuum System, small 

gap NEG coated 
chambers 

•  RF system, harmonic RF, 
transients, fill pattern 

•  Magnets, Radiation 
Production 

•  Optimization of Physics 
Design, Staging 

•  Emittance preserving 
photon optics 

 

300 
ps 

200 ns 

ALS-U fill 
pattern 
~180 mA 
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R+D Success (1) - Injection 

•  Single module with ALS-U parameters has been tested 
successfully (<<10 ns rise/fall time) 
–  Consistent with RF / THC design  

–  Full pulser almost complete; test with beam in FY16  
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R+D Success (2) – Bunch Lengthening 

•  Large bunch lengthening factors (>4) essential (IBS), but 
not routinely achieved before 

•  Extensive simulations (finite element, multi particle tracking) 
•  Measurements with ALS harmonic cavity system in parameter 

regimes close to ALS-U (fill pattern, lengthening factor) – 
Achieved factor 4.5, retiring large risk. 
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R+D Success (3) - Vacuum 

•  Concentrating on small apertures and unusual shapes 
–  Industry capabilities evaluated in parallel as part of COSMIC project. 

•  First small copper chamber (6 mm) NEG coated at LBNL, 
currently being characterized – activation tests in spring 
–  As far as we know this is the smallest chamber ever coated 
–  Developing in-house knowledge to model dynamic vacuum systems  

pressure 
profile 
1x10-9 ~ 
1x10-10 

mbar 

pressure 
profile 
~ 6x10-11 
mbar 
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Magnet Design Progress 

•  Magnets, Radiation Production 
–  Established feasibility of basic accelerator magnets (quadrupoles, 

gradient dipoles) – advanced materials and 3d pole shape 
–  Studying various hard x-ray options (permanent magnet and s/c 

Superbends, 3PW,  multiple field strengths) 
–  Studying Insertion Devices for small/round chambers 

 

Dipole  
Adjustment  

Winding 

Vacuum  
Chamber 
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ALS-U Baseline Lattice 
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•  Finished physics design and released baseline lattice 
–  Baseline lattice allows to study all engineering/layout/geometry 

questions and interdependencies in sufficient detail 
–  Baseline lattice achieves basic design goals – but further 

improvements desirable and tolerance studies under way 
•  Emittance, Dynamic Aperture, Momentum Aperture 
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Efficient Physics – Engineering Integration 

41 

•  Developed automated scripts to move 
from physics design to 3D CAD model 

–  Using Pre-conceptual designs for magnets 
–  Combining with sample designs for all necessary 

vacuum components 

•  Allows evaluation of space constraints/
interference and photon beamline needs 

 

BPM with  
expansion  

joint Standard  
BPM  

Anchor  
Point 

Standard  
BPM  
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X-ray Optics Development 
•  Challenge to preserve photon 

brightness/coherent 
wavefronts horizontally
+vertically: 
–  Surface quality 
–  Thermal distortions 

•  Work integrated as part of 
LDRD 
–  Team of ALS/ENG/CXRO/ATAP 

•  Advanced simulation tools 
•  Studying different cooling 

schemes, including LN cooled 
Si 
–  Will include hardware tests 

•  No show-stoppers identified, 
but much more work needed 
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Instrumentation Example: Beam Stability 

•  All of those requirements relate back 
into stability requirements for beam 
position + angle, beamsize + 
emittance, beam energy, beam 
energy spread, … 

•  Often stability can be more important 
to SR users than brightness+flux 

•  For current SR sources, this means 
for example submicron orbit stability 
(for ERLs in both planes) 

Typical requirements of 
modern SR user 
experiments: 

Measurement parameter Stability Requirement 

Intensity variation ΔI/I <<1% of normalized I 

Position and angle <2-5% of beam σ and σ’ 

Energy resolution ΔE/E <10-4 

Timing jitter <10% of critical time scale 

Data acquisition rate 10-3 – 105 Hz 
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Electromagnetic Beam Position Monitors 
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Capacitive Pickups 
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Performance of Fast Orbit Feedback at ALS 

46 

Comparison of orbit PSDs with and 
without fast feedback. 
Fast orbit feedbacks are in use at most 
light sources: APS, NSLS, ESRF, SLS, … 

Comparison of simulated 
(Simulink) and measured step 
response of feedback system in 
closed loop in a case where PID 
parameters were intentionally set 
to create some overshoot. 
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Longer Term Options 

•  Diffraction limited source might 
appear as end of development 
for rings 
–  That will likely change 
–  3rd generation was seen as 

endpoint  
•  Possible directions include: 

–  Partial lasing, special single/few 
turn modes, beam manipulations 

•  Having ALS-U as starting point 
makes any such options much 
more attractive and easier 
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Summary 
•  Dramatic and cost effective performance 

improvements beyond ALS are possible. 

•  Enabled by dramatic progress in accelerator 
physics, modeling and engineering in the last 20 
years 

•  Exciting accelerator R+D program underway, also 
performing pre-conceptual design 

•  ALS-U will be world leading facility for soft x-ray 
science enabling nanoscale microscopes with 
chemical, magnetic, and electronic contrast. 
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Backup Slides 
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National Need 

Report of the BESAC 
Subcommittee on Future X-ray 
Light Sources (July 2013) 
•  Given the impressive advances in 

accelerator technologies during the last five 
years, it is likely that the best approach for 
a light source with the characteristics just 
enumerated would be a linac-based, 
seeded, free electron laser (FEL). 

•  At the same time, the Office of Basic 
Energy Sciences should ensure that U.S. 
storage ring x-ray sources reclaim their 
world leadership position. […] It is essential 
that the facilities this science community 
relies on remain internationally competitive 
in the face of the innovative developments 
of storage rings in other countries. Such 
developments include diffraction-limited 
storage rings […] . 
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ALS Performance at a Glance 
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Scientific leadership 
•  world-class infrared to x-ray science 
•  world-leading soft x-ray science 
•  spectroscopy, scattering, and imaging 

techniques 
 

Outstanding annual metrics 
•  2400 users 
•  Growing at 10%/year 
•  800 science publications 
•  5000 operating hours 
 

20 years of growth 
•  40 instrument beamlines 
•  continual upgrade of machine brightness  
•  continual upgrades of science 

capabilities 
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History of TME / MBA 

•  Work in 1990 to find theoretical minimum emittance structures – Einfeld, et al. (NIM 
1993, PAC 1995, EPAC 1996) 

•  MBA is a modification of this, with (detuned) TME structure in the middle of the arc 
and (short) matching sections at ends 

•  Originally considered challenging (“chromaticity wall”) 
•  Max-4 is first full implementation of MBA 
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Scaling 

53 

M. Borland 

•  However, more and more magnet require magnets 
to become stronger (quadupoles about quadratically, 
sextupoles even quicker) 

–  Engineering limits 
–  Nonlinear dynamics 

•  Energy scaling is complex (magnet strength, C) 
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•  Brightness peak in soft x-rays allows lower 
electron beam energy (3 keV-2 GeV) 

•  Diffraction limited emittance larger (2 
keV-50pm) – reachable with 200m ring 

–  Vertical plane diffraction limited at same (‘large’) 
emittance - round beam  

•  Lower beam energy-shorter focal lengths-
more magnets, lower emittance 

–  Smaller ring-less unit cells-larger dispersion-
weaker sextupoles 

•  Intrabeam scattering much worse 
–  need to fill all buckets and lengthen bunches 

aggressively 

•  Heatload on optics depends on beam 
energy 
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Lattice optimization – Some examples 
•  GLASS – Global Analysis of All Stable Solutions 

• Tool to look for optimum lattice solution for 
highly periodic lattices (few parameters) 

•  MOGA – Multi Objective Genetic Algorithms 
• Usefulness for accelerators first 
demonstrated for photo injectors (Bazarov et 
al./Cornell)  
• Optimum solution with moderate computation 
time for larger dimensional parameter spaces 
• Integrated optimization of linear+nonlinear 
lattice possible 

• Resonance Driving Terms 
• High order achromats 
• Phase cancellation 
• Multi-sector cancellation 
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Simultaneous Optimization of linear 
and nonlinear Lattice 

ALS, C. Sun APS-U, M. Borland 
•  Challenge: space of stable solutions vs. quadrupole gradients very sparse 
•  In general case not possible to just include quads as parameters, but rather lattice 

parameters + lattice fit 
57 



C. Steier, ALS-U, LBNL Instrumentation Colloquium, 2015-8-26 

Fast kicker magnets 

storage ring bunches transferred to accumulator 
accumulator bunches transferred to storage ring 

New	
  accumulator	
  ring	
  

New	
  ALS	
  storage	
  ring	
  

Swap-out injection was first proposed by M. Borland for possible 
APS upgrades 

Swapping accumulator and storage ring beams 
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Goals for R+D program 

•  Reduce technical risks + explore new technologies for performance 
advantage of soft x-ray DLSR 
–  Concentrate on areas with highest technical risk 
–  Approach: Demonstrate necessary technology at subsystem level or 

through advanced simulations 
•  Selection of R+D topics covers main areas of risk and opportunity: 

–  Low emittance è compact, small aperture magnets è very small 
vacuum chamber diameter è need for NEG coating 

–  Low energy ring è intrabeam scattering is severe è aggressive 
bunch lengthening as well as filling as many buckets as possible 
è pulsers with very small rise and fall times 

–  Highest possible brightness èneed for optics that preserve 
coherent wavefronts.  

–  Small apertures (both planes) open new opportunities for radiation 
production devices.  
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Vacuum System / NEG chambers 
The challenges are: 
•  NEG coatings for very small (< 10 mm)  

aperture 
•  Integration of ports for many beamlines 
•  NEG activation challenges 

–  In-situ (SIRIUS, Soleil, …) 
–  Ex-situ (Max-IV) 

 Concentrate our R+D effort where no industrial 
solution available, yet:  

•  Smaller apertures (<10 mm) 
Also improving process where we see 
problems: 

•  Complex geometries 
•  Activation 
•  Cleaning 

But work in parallel with industry (ID chamber, 
development process) 

J.	
  A.	
  Thornton,	
  	
  J.	
  Vac.	
  Sci.	
  Technol.	
  11	
  
(1974)	
  666	
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Bunch Lengthening / (harmonic) RF  
•  Bunch lengthening factors of >=4 

essential  
•  Demonstrated (s/c or low 

frequency RF) but difficult 
•  Fill pattern important 
•  Pursuing various options 

•  (100/500/1500 MHz, n/c or s/c) 
•  Conducting beam tests on ALS to 

verify simulation codes 
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